THERMAL SLIP OF A MODERATELY DENSE GAS ALONG
A FLAT SURFACE
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The solution is constructed for the problem of thermal slip of a moderately dense gas along a
flat surface. The method of half space moments is used,

Thermal slip has been studied in many papers (see [2], for example). As a rule, the Boltzmann equa-
tion with a model collision integral in the BGK form {4] has hence been used. The influence of the gas not
being ideal on the thermal slip velocity is taken into account here by using the Chapman — Enskog equation for
compact gases converted within the scope of the BGK ideas.

Let us consider a gas which is above a wall in temperature gradient field tangential to the wall. Let us
introduce a Cartesian coordinate system with origin on the wall surface, x axis along the normal to the wall,
and y axis along the wall surface in the direction of grad T.

The well-known Chapman ~ Enskog equation for dense gases [1] with a nonlocal collision integral, which
is ordinarily expanded in a power series in the small parameter ¢/L (¢ is the effective molecular diameter,

and L is the characteristic dimension of the problem), with only terms not above the first order in ¢/L re-
tained:
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is the initial equation. Here g = v;— v is the relative velocity of the gas molecules; k, a vector along the line
of centers; X, a factor taking account of the increase in the collision probability with the rise in gas density.
The following expression for x can be used for gases of moderate density:

5

X=1+—§— bo,

where b = 2/3- 7r03/m; p =mn; n is the number of molecules per unit volume and m is the mass of the mole-~
cules.

In this case the characteristic dimension is the Knudsen layer thickness which equals the molecule mean
free path A in order of magnitude. The ratio o/A is therefore a small parameter. The requirement of small-
ness of 6/A imposes a constraint on the density, Thus, if it is assumed that 6/A ~ 0.1, then we obtain n =~
8.9 +10%!, which corresponds to a pressure on the order of 300 atm (for hydrogen),

Let us introduce the following notation:
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Since the influence of the wall on the molecule velocity distribution has a finite radius of action, the dis-
tribution function far from the wall should go over into the Chapman —~ Enskog distribution

f=r 1+ vl
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S§1)2 = (5/2) - cz; 7y is the gas viscosity at the same temperature under normal pressure. The viscosity of a

/

dense gas is associated with 1y by the relation
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Near the wall it is necessary to distinguish between the distribution functions of the incident and reflected
molecules, which we denote by the superscripts — and +, respectively.
Let us seek the distribution function in the form
fEF=F1+%E 9+ o, 1. 2

Here ¢ is the correction to the distribution function, which takes care of the influence of the wall. As is shown
in [3], 18¢/8yl <« |8¢/8x|, hence ¢ can be considered a function of just ¢ and x,

The main assumption of the BGK method is that the distribution function goes over into a local Maxwell
distribution ¢4 during one collision, hence, the substitution f', f} — £'®q, £®d must be made in all the integrals
in the right-hand side of (1). Moreover, the first of the integrals is replaced by the expression v(fed - 1),
where v is the collision frequency. Let us also note that n, and therefore x, vary slightly within the Knudsen
layer limits, Taking the above into account, we substitute (2) into (1) while retainingfirst-order terms in /A
here:
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It is here taken into account that £'®9f{d = €999,

The first and third integrals in the right-hand side of (3) are easily evaluated analytically [1]; hence
taking into account that the continuity equation and the momentum and energy conservation laws are satisfied
far from the wall, we obtain
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We obtan an expression for v
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from the condition that ¥ is the Chapman — Enskog correction far from the wall.
Terms corresponding to the Chapman — Enskog solution
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vanish in (4) for such a selection of ¥. Let us introduce the new function & = 2¢yG + @, where we seek @* in

the form of a series expansion in Sonine polynomials in velocity space:
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We rewrite (2) in the form
fr=[011 +,(C y) + D=(c, %] . {6)

which it is easy to use to obtain an expression for G:

1 :
G= —4— (af + ap).

Upon substitution of the expressions for ¢ and G into (5), the integral in the right-hand side is easily
evaluated and vanishes identically. We finally obtain
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Here B = (2/5)bpx =~ (2/5)bp since bp is a small quantity for a moderate density gas so that terms of order
higher than the first can be neglected. We linearize with respect to bp where necessary, in all the formulas
obtained below, unless specially stipulated otherwise,

To determine & uniquely, we introduce a boundary condition on the wall surface
[rexs €y €2 0) =g + (1~ ) [~ (— s, ¢y, €, 0), (8)
where q is the accommodation coefficient (0 = q = 1), Letusmultiply (7) successively by cy(l *+ sign cy) exp (~c?),
cys?f /(1 £ signcx)exp (—c 2) and let us integrate over velocity space. We obtain a system of moment equations
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Here by = af + B/4(af + a3).
We seek the solution of system (9) in the form
bE =, -+ aF cyexp (—ax), af = of Cpexp (— ax).
Here
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- (_?_2_ n) Ty, ap =1, ay=0.3736, o = 1.2834, a7=0.0306..

It is now necessary to go from the variables boi to the variables af,E . To do this it is sufficient to solve the
system

(1 + p/4) af + B/4af = ¢, 4 aF coexp (—ax).

We obtain
ag = (1 —p/2) ¢ + [aF — (1 4 a7) f/4] c2exp (— ox).

The constants c¢; and ¢, are determined from the boundary condition (8)
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Recalling that G = (1/4)(a§ + a7), an expression for the slip velocity is easily obtained: u, = (2£T/m) > lmG =

1 x>0

(2kT /m)_“’~ —02?— (1—P/2). Substituting the expression for ¢, here we finally obtain
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In the limit cases of pure diffusion (g = 1) and pure specular (g = 0) reflection, we obtain
d
lgy==1.69p (1 — 0.337bp) W!n T, (11)
3 d .
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Formulas (10)-(11) differ from the corresponding formulas for a rarefied gas by terms proportional to
bp. As p — 0, expressions (10)-(12) go over into the corresponding expressions in [2].

Let us determine the thermal slip coefficient as follows:

d InT.
Y
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Then it follows from (10)-(12) that the thermal slip coefficient kg; is less in dense than in rarefied gases.
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PECULIARITIES IN THE ONE-DIMENSIONAL MODEL
OF RADIANT HEAT EXCHANGE

A, 8. Nevskii and M. M. Mel'man UDC 536.3,001,24

Radiant heat exchange is considered in a one-dimensional model. The role of internal heat
transfer is considered, Maximum and minimum heat liberation values are determined, A
method for calculation is proposed.

The most widely used model for study of radiant heat exchange in a furnace is the one-dimensional model.
In such a model the furnace operating space is likened to a channel, along which the exhaust gases move. The
gas temperature along the directions perpendicular to the motion is assumed constant. There is no theoretical
justification for the use of such a model.

We will write the energy equation of an elementary volume in the following form:
i
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